STABILITY OF A LAMINAR BOUNDARY LAYER
OF A POWER~LAW NON-NEWTONIAN LIQUID

V. V. Zametalin UDC 532.501.3

The stability of a laminar boundary layer of a power-law non-Newtonian fluid is studied. The
validity of the Squire theorem on the possibility of reducing the flow stability problem for a
power-law fluid relative to three-dimensional disturbances to a problem with two-dimensional
disturbances is demonstrated. A numerical method of integrating the generalized Orr—
Sommerfeld equation is constructed on the basis of previously proposed [1] transformations.
Stability characteristics of the boundary layer on a longitudinally streamlined semiinfinite
plate are considered.

In this work, we will study the stability of a laminar boundary layer of fluids with a power rheological
law, for which the relation between the stress tensor 7 i and strain rate tensor éij has the form

—1
SRR -med.
Tij= — 8P+ ki3 emem| * €, )

where i, j =1, 2, 3; k is the consistency index; n is the non-Newtonian index; p is pressure; and §;; is the
Kronecker symbol. We will assume that media corresponding to n> 1 are dilating, while media with values
n< 1 are pseudoplastic, the latter including, in particular, aqueous solutions of high polymers. The case n=1
corresponds to 2 Newtonian fluid.

The flow stability of a power-law non-Newtonian fluid has been considered for a plane channel in [2].
The stability of the boundary layer of a power-law fluid was studied in [3, 4] using asymptotic methods. The
critical Reynolds numbers for 0.2=n=2 was estimated in [3] using an approximate formula derived
there. Neutral stability curves for dilating fluids have been constructed in [4]. Some results [3, 4]
are contradictory in the range of values n> 1. This leads to the necessity of a more careful determination of
the stability characteristics, which can be attained by numerically integrating the stability equations. In the
current work, the stability of the boundary layer of a power-law fluid is studied numerically on the basis of a
previous method [1].

Well-known differential motion equations of a power-law non-Newtonian fluid [5] are obtained by sub-
stituting Eq. {1) in a stressed deformable continuum equation. Let us represent a nonsteady disturbed flow as
the sum of two flows, namely, a steady main flow and small disturbing flow, As usual [6], we will assume that
the main flow is laminar and that the components of disturbed motion can be represented in the form

=uly)eiles+pa—inct;

U-_—U(y)e i(ax+ﬁz)——imct;

w=w( y)eiz=tpa)—iact,

D =p(y)eilextpr—iact,
where o and 8 are real values and ¢ =c. +ic; is complex,

The disturbing motion is assumed to be three~dimensional, since it has been proved [7] that the Squire
theorem does not hold in the general case for non~Newtonian fluids.
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Fig. 1. The parameter n increases
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We linearize the dimensionless differential equations for total flow, subtracting from them the main
flow equations, obtaining

ioReu(U — ¢)+vU RetiaRep=(U") »nu"”" — (a>+pu +(n — Niat' I4+(n — V(U )20 (v’ +-iav); (2)
. iaRev(U — ¢)+Rep’ =(U")Iv"" — (22 +pRvtialn — )Nu' -Hiav)1+2(n — WU y—2U"vs
oRow{ U— o) tifRep=(U" 41" — (a2+Bwl-{n — (U P=30" (' +iv); dout-fu)-+v' =0,

where U(y) is main flow rate, Re=p Uiparohar/k is the generalized Reynolds number (p is fluid density).
The primes denote differentiation with respect to the dimensionless tranverse coordinate y.

Thus, we have four equations to determine the four variables u, v, w, and p in the case of a three-
dimensional disturbing motion.

Equations (2), after the transformations
al=a?4{-pe, 7 Re=pRe, aRe=aRe, v=v,

T=¢, au=0au--pw;
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take the form

a2 3

iaReu(U —¢) -vU Re+iaRep=(U/y»nu'" — alu-+-(n — 1)i5':i;~'lj'r(n — DU 20" (W i), 3
wRep(U — o)+Rep’ =(U' )1 — a2p+ia(n — H(u' +ian) 1+2n — H(U)=20"7'; jau-0' =0.
Equations (3) correspond to two-dimensional disturbing motion with Reynolds number Re less than
Re in Egs. (2). The Squire theorem for a power-law non-Newtonian fluid therefore holds,

In place of Egs. (2) we then consider the two-dimensional analog of Egs. (2), which is obtained if we
set w=0 and B =0. We introduce a dimensionless stream function of the disturbing motion in the form

wztp(y)eia(x—et)
obtaining, after some algebra, the generalized Orr—Sommerfeld equation for a power-law fluid,

ryn—3
(U — ) (¢ — o) — U"g = G (U P ™Y —202¢" @)

+ atp) -+ (n— 1) (2rU'U ¢ 4-140? (U')? + nU'U" +n(n—2)(U)Plo”
+2(n—2)cPU'U"Q -+ e (U'U" 4+ (n—2){U")?] 9]}

When n=1, the equation turns into the ordinary Orr—Sommerfeld equation for a Newtonian fluid. The gen-
eralized Reynolds number for the case of a boundary layer is written in the form

Re = pUZ ~"6/k,
where U, is the free-stream flow rate and ¢ is layer thickness.
The boundary conditions have the form
(0)=9'(0)=0, {5)
¢(c0) =¢"(00)=0.

Transformations [1] proposed for the ordinary Orr—Sommerfeld equation were used in solving the problem
(4), {5) for the eigenvalues.

We define the function Dj (1=1, 2, 3, 4, 5, 6) by the equations

.o o
D, = (p} q‘)?" D,= i(P'i’ (pz s Dy= E(p,f, (pzm 3

P11 P2 Q1 @ 91 @o
=08 p _~_l‘Pi, e
Pt P2 P P2 D1 @

where ¢, and ¢, are the two partial solutions of Eqs. (4) satisfying conditions (5). Then Eq. (4) can be re-
duced to a system of six ordinary differential equations:

Dy =D, D,=D,+ AD,+ GD;+ BD,,
Dy =D,, Ds=D,+ AD,-BD,— ED,,
D; = ADy—GD, — ED,, Dg = D, + Dy,
where

A=2(1 — n)U"(U')Y

B=(—n) [ ()P ) U0 | 4 20+ R - ) U

G =2 (1~ n)(rn — 2) 220" (U')~;
E=(—n)o2{U"({U)'+ (n—2)URU) ] —a — i’-l"i Re (U') = [(U — c)a? - U"1.
We obtain the simple condition D,(0) =0 fo find the eigenvalues. We carry out the normalization Z; =Di/ Dy
and eliminate Z; by integrating the system Z;=7,7,+7Z,Z,, finally being left with

Zi:1~—Z1(Z2+Z4), {6)
Zé:Z1Z3-Z%,
Zy=AZy—GZ,—E —Z4(Zy+ Z,),
Zy,=B+GZ, - AZ,+ 2,2, — 75
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TABLE 1

No, of

nrve C n k
Tom

Fig. 5

1 0,6 |0,506]0,736
2 0,3 0,546 | 0,307
3 0,2 (0,579]0,173
4 0,4 | 0,666 0,051
5 0,05 | 0,789 0,010
6 0 1 0,001

Since the influence of viscosity is absent and, consequently, so are the non~Newtonian properties
outside the boundary layer, the boundary conditions at infinity (5) can be carried over to the external edge
of the boundary layer (y=1) in the usual fashion [4, 6]. We will write the boundary conditions in the form

)+t +-o)9’ (1) (1) =0;
¢""(1) g’ (1)=0

for convenience in calculating values of Zi(1). We set

n=1 gr=—a; g1 =0% ¢} =— o
=0 ge=1; gr=—1—0; g5 =a(l+0)
when y=1, obtaining the boundary conditions for the system (5),

Zy=— iz, =

TiFe Z3=0; Z,= —a. (D

3 -
T Iifa
Thus, the problem has been reduced to a solution of the system (6) with the boundary conditions (7). The
condition Z(0) =0 can be made to hold by varying «, Re, and ¢ and the eigenvalues are thereby found.

A self-consistent solution of the boundary-layer equations of a power-law fluid for the case of plane
longitudinal streamline of a semiinfinite plate was used to determine the velocity profile. The boundary-
value problem for the ordinary differential equation

lF"ln—lF"’+FF,’=O,
F(0)=0, F'(0)=0, F'(c0)=1

was numerically solved using the method of group transformations set forth in [8]. The calculated veloc-
ities reasonably agree with those presented in [5].

Stability characteristics of the boundary layer of a power-law fluid for the range of values of the non-
Newtonian factor 0.1 =n=1, 2, i.e., basically for pseudoplastic fluids of most interest from the practical
point of view, were calculated based on this technique. Neutral stability curves are depicted in Figs. 1
and 2 (¢* =ad*/ 6; Re* =Red */5; where 6 * is displacement thickness).

The dependence of the generalized critical Reynolds number Re* on the parameter n is depicted in
Fig. 3 (curve 1), in which the monotonically increasing nature of this function is maintained as we pass
through n=1, Thus the results qualitatively agree with the previous [3] data obtained asymptotically (curve
2). Qualitatively satisfactory coincidenceis observedwhen0.6 =n=1. On the other hand, an extremely
substantial divergence of the curves occurs in the region of low n, Curves of equally increasing distur-
bances calculated forthe boundary layer of a power-law fluid when n=0.5 (solid curves) and a Newtonian
fluid (broken curves) for identical ci are depicted in Fig. 4.

The coordinates of points at which flow loses stability in the boundary layer as a function of the
free-stream flow rate U, for aqueous solutions of the high-molecular-weight polymer ET-597 were cal-
culated based on our results, using previous [9]data. The family of curves constructed for the different
concentrations (Fig. 5) allows the stability of the boundary layer of non- Newtonian power-law and New-
tonian fluids to be graphically compared. Concentration C in percent, the non-Newtonian factor n, and con-
sistency index k[ch/ m?] for the corresponding curves in Fig. 5 are depicted in Table 1, The value of k
is replaced by the viscosity of pure water at 20°C when C=0 and n=1. It is clear in Fig. 5 that, in spite
of the general decreasing tendency for stability with increasing non-Newtonian properties, a region exists
for low U, where the calculated points at which stability is lost for the polymer solutions is situated down-
stream from that of pure water. Our results lead us to conclude that the non-Newtonian viscosity of high-poly-
mer solutions exerts a destabilizing influence in the case of flow into the boundary layer.
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CONVERGENT SHOCK WAVE IN AN IDEAL ELASTIC
NONHOMOGENEOUS MEDIUM

I. V. Simonov UDC 539.374

The boundary-value problem for symmetric focusing of a shock wave in a medium with variable
density under a constant load (model of a porous body with variable initial velocity) is solved.
The solution asymptotic is studied, Focusing in a homogeneous medium has been previously
studied [1]. One inverse problem related to the choice of the optimal pressure conditions is
examined. Constraints on the applicability of the model are touched on.

Suppose a uniform load p(t) is applied to the surface of a sphere (cylinder, layer) whose initial density
is a differentiable function of the radius [p =p(r)] at a moment of time t =0, We assume that the load instan-
taneously attains a finite value py(t) > 0 and does not increase any further (the physical meaning of this con-
dition is that of an explosion on the surface); the medium is ideal (without tangential stresses). The density
of the medium at any point p; is set equal to a constant (0 <p < p,) and remains constant if the pressure at this
point reaches values arbitrarily greater than zero. This highly simplified model approximately describes the
behavior of a body with variable porosity and uniform skeleton at high loads,

A shock wave will propagate from the surface to the center. The focusing process for the shock wave in
a homogeneous medium has been studied in [1]. The purpose of the current report is to investigate the in-
fluence of nonhomogeneity on the motion of the medium behind the front of a convergent shock wave. In par-
ticular, the variation in the degree of cumulation of a shock wave is of some interest. If may be expected that,
as in the case of an ideal gas of variable density [2], the choise of p(¥) can either weaken or intensify accumu-
lation.

The following motion and continuity equations hold within the region bounded by the moving surface r=
Ry(t) and the shock wave front r=R(t):
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